TECAMID 66 GF 30 black

Chemical Designation: Polyamide 66
(Nylon 66)

DIN Abbreviation: PA 66 GF 30

Colour, Filler: Black
30% glass fibres

TECAMID 66 GF 30 is a 30% glass fibre reinforced semi-crystalline engineering plastic with high strength and varied applications.

Main characteristics:
- Very strong
- Very rigid
- Resistant to many oils, greases, diesel, petrol, cleaning fluids
- Not electrically insulating
- Good dimensional accuracy
- Very abrasion resistant
- Good heat distortion resistance
- Easily machined
- Easily bonded
- UV and weather resistant

Preferred fields:
Mechanical engineering, automotive engineering, transport and conveyor technology, gears, couplings and engine construction, textile, packaging and paper processing machinery, precision engineering, electrical tools

Applications:
- Diverse machine parts
- Levers
- Thermal insulators
- Wiper blades
- Housing parts
- Distance pieces
- Friction rings
- Support rings

Ensinger Ltd
Wilfried Way
Tonyrefail
Mid Glam CF39 8JQ

Tel: 01443 678400
Fax: 01443 675777
Web: www.ensinger.ltd.uk
Email: sales@ensinger.ltd.uk
The following information corresponds with our current knowledge and indicates our products and possible applications. We cannot give a legally binding guarantee of certain properties or the suitability for a specific application. Existing commercial patents must be observed. A definitive quality guarantee is given in our general conditions of sales. Unless otherwise stated, these values represent averages taken from injection moulding samples. We reserve the right of technical alterations.

Properties

<table>
<thead>
<tr>
<th>Properties</th>
<th>Unit</th>
<th>Test method DIN EN ISO / ASTM</th>
<th>Dry / wet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density</td>
<td>g/cm³</td>
<td>527 / D 792</td>
<td>1.35</td>
</tr>
<tr>
<td>Tensile strength at yield</td>
<td>MPa</td>
<td>527 / D 638</td>
<td></td>
</tr>
<tr>
<td>Tensile strength at break</td>
<td>MPa</td>
<td>527 / D 638</td>
<td>160 / 140*</td>
</tr>
<tr>
<td>Elongation at break</td>
<td>%</td>
<td>527 / D 638</td>
<td>3</td>
</tr>
<tr>
<td>Modulus of elasticity in tension</td>
<td>MPa</td>
<td>527 / D 638</td>
<td>8000 / 7500</td>
</tr>
<tr>
<td>Modulus of elasticity in flexure</td>
<td>MPa</td>
<td>178 / D 790</td>
<td></td>
</tr>
<tr>
<td>Ball indentation hardness</td>
<td>MPa</td>
<td>2039 / I</td>
<td>175</td>
</tr>
<tr>
<td>Impact strength</td>
<td>kJ/m²</td>
<td>179 / D 256</td>
<td>70</td>
</tr>
<tr>
<td>Creep rupture strength after 1000 hrs with static load</td>
<td>MPa</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>Time yield limit for 1% elongation after 1000 hrs.</td>
<td>MPa</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>Coefficient of friction against hardened and ground steel p ≥ 0.05 N/mm², v = 0.6 m/s</td>
<td></td>
<td>--</td>
<td>0.45 - 0.5</td>
</tr>
<tr>
<td>Wear conditions as above</td>
<td>µm/km</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crystalline melting point</td>
<td>°C</td>
<td>DIN 53 736</td>
<td>260</td>
</tr>
<tr>
<td>Glass transition temperature</td>
<td>°C</td>
<td>DIN 53 736</td>
<td>72 / 5*</td>
</tr>
<tr>
<td>Heat distortion temperature Method A</td>
<td>°C</td>
<td>R 75</td>
<td>250</td>
</tr>
<tr>
<td>Heat distortion temperature Method B</td>
<td>°C</td>
<td>K 75</td>
<td>250</td>
</tr>
</tbody>
</table>

* after storage in a standard 23/50 atmosphere (DIN 50 014) to equilibrium

ENSINGER: Production and stock programme
- Semi-finished product, finished parts, injection moulded parts and profiles in more than 500 materials and modifications.
- Engineering plastics: PA extruded or cast, POM, PC, PET, PBT, PPE, PE, PP
- High temperature plastics: PI, TPI, PEEK, PPS, PES, PPSU, PEI, PSU, PVDF, PCTFE, PTFE
- Stock length: Standard 3 metres. Cast rod and sheet 2 mts. Tube up to 3.5 mts. PE, PP, PVC, and PTFE 2 mts
- Pressed/sintered semi-finished product: PI, PEEK, PPS, PTFE/PI and modifications, as well as PCTFE in special sizes ie, large discs, tubes and rings with diameters up to about 1400 mm
- Material modifications: eg. glass, carbon and aramid fibre, talc, MoS₂, graphite, PTFE, PE, silicone oil, internal lubrication